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ABSTRACT 

We present a new approach for calculating tuxmelling amplitudes from a 

non-local&d initial state. Generalising the matching conditions and equations 

of motion to allow for ‘complex’ momentum permits a description of twmelling 

in the presence of so-called classical motion. We comment on possible applica- 

tions of the method. 
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That quantum mechanical probability density can permeate into regions in which a 

classical particle is forbidden was (and perhaps still is) one of the more intriguing features of 

the Scbr&iinger equation. Rapidly however, it was turned into one of the major successes of 

the early wave mechanics in providing a successful theoretical description of alpha particle 

emission in radioactive decay. Since then, tunnelling has found many applications, yet 

our understanding of many aspects of the phenomenon remains limited. Motivated by 

difficulties’ in calculating tunnelling amplitudes in recent two-field inflationary mod&-‘, 

we re-examined the quasi-classical approximation to the S&r&linger equation to see if 

one could incorporate more complicated evolution of the wave function without losing the 

simplicity of that approach. We found that the problem reduces to two key issues: that 

of incorporating complex momentum into a quasi-classical description, and the related 

problem of matching conditions between different asymptotic regimes. Here we will show 

how to resolve these questions, illustrating some results from a test potential. A more 

detailed exposition may be found in a companion paper’. 

First let us summari se the current status for calculating tunnelling amplitudes. Most 

tunnelling calculatiods proceed via the quasi-classical approximation*, which extracts the 

leading order “clsssical” behaviour of the system. If we assume the wave function takes 

the form 

9(x, t) = e i-(x)/he-iEt/h 
I (1) 

then the Schrodinger equation gives 

&(V”)z - +T = E - U(x) (2) 

sa the equation of motion for Q. The quasi-classical approximation drops the O(h) term 

in (2), which clearly requires that IVula B tilV*uI. 

In tunnelling, we need to solve the S&r&linger equation in regions where U > E, 

therefore we set Q = ig and obtain 

(Vg)’ = 2m( U - E) (34 

g= -4 J 2774 u - E)dZ, Pb) 
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where 1 is the path which minimises the integral and xf is the point of emergence of that 

path into the classical regime. This geometric solution to the problem in more than one 

dimension was first obtained by Banks, Bender and Wu” for the case of tunnelling from 

a localised state, they called I the escape path. The calculation of 1 and g in practise 

is facilitated by the Euclidean time prescription whereby we associate Vg with per a 

Euclidean momentum, and (3a) becomes a Hamiltonian problem of particle motion in the 

(inverted) potential -U. It is then a classical dynamics problem to calculate the trajectory 

x(r), which interpolates between the initial position and the position of emergence from 

the barrier. 

This approach is powerful, however it does have one crucial restriction, namely, it 

requires that space be divided into regions in which Vu is entirely real or entirely imaginary 

so that we can identify p = Vu with some ;(“time”). Clearly we then need j, to vanish on 

the boundaries between these regions. In the context of the escape path, we need i2 + 0 

at each end of the path. In general it requires two initial conditions to 6x the start of 

the escape path, which uses up the requisite number of boundary conditions, leaving no 

additional freedom for the end point, which in general will not satisfy 2 = 0. Another 

related problem is that we have no allowance for the transport of real momentum under a 

barrier, which we know definitely does occur in the case of a continuous symmetry. There 

is also the problem of picking an initial posit+ from which to integrate, since we can only 

localise a particle at the expense of information about its momentum. We clearly need a 

more general picture of tunnelling. 

In order to solve the Schkidinger equation when the momentumis complex, we rewrite 

(2) in terms of the real variables f and g, where Q = f + ig: 

(Vf)’ - (Vg)a + tiV’g = 2m(E - U) (4a) 

2Vf.Vg - tiVZf = 0. (46) 

In the quasi-classical approximation we neglect the O(ti) terms in these equations, this will 

be valid unless 

(Vf)” - IiVZf 

(Vg)l N hVZg 

3 

(5) 



i.e. unless lVf[, IVgl is small or IV'fl, lVzgl large, this latter situation occurs at caustics 

of the motion. The simplest way to visualise this is to consider B plane wave scattering 

off some barrier. The integral curves of Vf trace out the path that a family of classical 

particles would follow in that potential. Clearly, neighbouring, initially parallel, trajecto- 

ries will at some stage cross, and at such a place, referred to as a caustic, V'f becomes 

unbounded. 

Having identified the boundary between different asymptotic regions, we now focus on 

the turning surface to obtain the matching conditions. We first consider a local coordinate 

system along the caustic {z,yi} where z is orthogonal distance from the caustic, and the 

y’ are carte&n coordinates in the surface of the caustic. Provided the caustic is not too 

strongly curved, the potential is roughly a function of 2, and we may deduce that the true 

(continuous) solution of the SchGdinger equation is 

+(z,y’) = ciPiv61Afi fi-*/*(2m~,z )I/* I) (‘3) 

where Ai is the Airy function. That the curvature of the caustic not be too large trans- 

lates to a bound on VfU: noting that (6) implies that the quasi-classical approximation 

breaks down when 121 5 tiz~s(2mU,. )-113, we obtain a limit of VfU < FL-~I’U,~‘~. Equa- 

tion (6) gives us the i&al conditions for f and g for integrating out beyond the caustic. 

Clearly the parallel momenta, pi are conserved across the boundary, i.e. Vif, Vig con- 

served. The orthogonal components are determined on either side of the boundary by using 

equation (48) and demanding that real (Vf) and imaginary (Vg) momenta be orthogonal 

(equation(4b)). This 6xes the initial conditions for the momentum on the other side of the 

boundary. We now need to propagate f and g out from the boundary, i.e. solve (4a,b). 

In order to facilitate the solution of (4a) we assume E < U, which implies that Vg is 

dominant under the barrier, however, we do not wish to neglect Vf as an O(h) correction, 

otherwise we would use existing techniques. Instead we want to consider a situation where 

tC Q g < 1, and iteratively solve 

(Vg)2 = 2mU-(2mE- (Vf)2) (7a) 

Vf.Vg = 0, Pb) 
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bearing in mind that (Vf)', E are of the same order, and small compared with (Vg)*, U. 

The first step is to find the leading behaviour, that is, to solve (Vg)* = 2mU. In 

order to do this, we use existing techniques. We regard the solution under the barrier as 

being composed of a family of escape paths (1~~)) ori g inating from the turning surface at 

(y[-,, 0), and propagating under the barrier until a caustic is reached. Along each escape 

path we have a solution for g determined by (3b) with E = 0. This will give us a leading 

order solution to the problem. Now we use the information from (7b), that f is constant 

along integral curves of g, to set f = f(ppf,)(x)) where p{,)(x) = yt,,, are the equations 

for the family of escape paths I(,). Finally, we input this solution for f back into (7a) to 

obtain the correct form of g to order E/U. Once WC have the solution under the barrier 

WC may match across into the far ‘classical’ Ggime and follow a similar procedure to the 

above to complete the solution of the Schrcidinger equation. 

To recap: this method solves the S&r&linger equation in the stationray quasi-classical 

approximation for tunnelling in potentials with non-localised minima. The restrictions on 

the type of potentials it can deal with are that E < U under the barrier and that the 

transverse derivatives of U at the matching boundary be bounded by li-•/‘lJ,:“. This 

method is therefore ideal for problems involving scattering off a ‘wall’. 

As a simple illustration of the method, consider a plane wave, eik.x/lt, scattering off 

a wedge potential in two dimensions, U(T) = VO(z)O(a - z - ey), see fig. 1. Here, our 

initial conditions at z = 0 are g = 0, f = h,y,, g,= = m and f,. = 0. Integrating 

out is straightforward since the potential is constant and gives g = mz. Imposing 

f =const. along integral curves of g, which in this case are y = y,, simply gives f = k,y, 

then inputting this back into (7a) gives g = J-z = K.Z. In this example our 

iterative procedure under the barrier is now complete. At the far edge of the barrier the 

appropriate boundary conditions ase now non-standard, the momentum parallel to the far 

edge being complex: p,, = (p, - icn)T, where T is the tangent vector to the far edge 

of the barrier. Orthogonality of the real and imaginary momenta and (7a) requires that 

pi = (p, + ic~c)N+O(2). Setting 

(=z-a+ey , TJ = y - e(z -a) 
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(see fig. 2) we may integrate out from the boundary to obtain 

f,., =p,I i-P,7 

g.,, =Ke-eK7&-p( 

Note some interesting features about this solution. The incoming and outgoing real mo- 

menta are not parallel, although they subtend the same angle with each side of the barrier. 

Note too that g is spatially dependent, decreasing in regions where the barrier is thinner. 

However, the really curious features of scattering off this potential are most clearly ex- 

hibited if we consider a Gaussian wave packet scattering off the barrier. For the sake of 

definiteness we take the momentum to be peaked at (p,,p,) with spread Aft*, hitting the 

origin at t = 0. Such an incident wave packet might reasonably be supposed to represent 

a particle scattering off the barrier. For the trajectory of the outgoing peak we obtain 

P,( II = p,(l _ 2aXtL,n) + g 
( 

2 

1 + $1 - 2awn)s 
> 

with a transmission amplitude of e--rze=* Ii. In other words, a particle ‘incident’ on the 

barrier at 1 = n = y = 0 emerges at TJ]. = E(l +$(l-2aXri/n)s). One can also calculate 

the time of emergence, t. = 3 1 (1 - 2aM/rc)s. The particle emerges considerably 

‘downstream’ from where one might expect it, neither at x = (a,O), nor at x = (a, co), but 

at x = (a-q=, 7.). Furthermore, the time at which it emerges is potentially large compared 

with ti and even, if p, < 0, potentially negative ! In fact, both these peculiarities arise 

kom a simple physical reason, the fact that the most energetically favourable time for the 

Gaussian to tunnel is not necessarily when the peak hits the barrier. Tunnelling amplitudes 

depend exponentially on the size of the barrier, therefore it is more favourable to tunnel 

where the barrier is thinner, hence the dependence of the transition amplitude on zOUt. On 

the other hand, the probability density along z = 0 is damped by an exponential factor 

depending upon how far away that point is from the peak of the Gaussian. Clearly there 

will be a pay off between these two factors which mcly mean that it is more energetically 

favourable for the fringe of the Gaussian to tunnel, rather than its peak. 
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Apart from giving an initial step in the problem of calculating two-field tunnelling 

amplitudes, our method (and illustrative example) may also have applications in other 

areas of tunnelling theory. For instance, one of the outstanding problems in tunnelling 

is defining a unanimously acceptable tunnelling time. From the uncertainty principle, we 

know such a time, TV, should be of order fi, but when using stationary states in a time 

independent potential, finding TV is not so straightforward, indeed quite a controversy 

existss. Our example suggested that one of these definitions, the extrapolated phase time’ 

is not a good definition of tunnelling time as it stands. Unfortunately, we can shed no light 

on what is! 

While we have only applied this method to a small range of exampless, the results 

we have so far obtained are encouraging: the modifications seem to give quite different 

qualitative pictures for scattering. The esssential step forward from the Banks, Bender 

and Wu approach was to identify a general boundary between different WKB regimes. It 

can only be hoped that a similar generalisation of Coleman’s field theoretic procedure”’ is 

possible. 
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Figure 1. The barrier U(x) = VO(z)O(a - 3: - ey). 



Figure 2. Trajectory of Gaussian peak scattering off barrier. 
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